

1. Scope

This specification is applied to Multilayer Ceramic Chip Capacitor(MLCC) for use in electric equipment for the voltage is ranging from 4V to 50V.

The series suitable for general electrics circuit, telecommunications, personal computers and peripheral, power circuit and mobile application. (This product is compliant with the RoHS & HF.)

2. Parts Number Code

(1)Product

Product Code	
С	Multilayer Ceramic Chip Capacitor

(2)Chip Size

Code	Length×Width	unit : mm(inch)
1206	3.20× 1.60	(.126× .063)

(3) Temperature Characteristics

Code	Temperature	Temperature	Temperature
	Characteristic	Range	Coefficient
Х	X7R	-55℃~+125℃	± 15%

(4)Capacitance	unit :pico farads(pF)
Code	Nominal Capacitance (pF)
684	680,000.0

X. If there is a decimal point, it shall be expressed by an English capital letter R

(5)Capacitance Tolerance

Code	Tolerance	Nominal Capacitance
К	± 10.0 %	More Than 10 pF

(6)Rated Voltage

Code	Rated Voltage (Vdc)
050	50

(7) Packaging

Code	Туре	
Т	Tape & Reel	

3. Nominal Capacitance and Tolerance

3.1 Standard Combination of Nominal Capacitance and Tolerance

Class	Characteristic	Tolerance	Nominal Capacitance
Π	X7R	K (± 10.0 %)	E-3, E-6 series

3.2 E series(standard Number)

Standard No.	Application Capacitance												
E- 3	1.0				2.2			4.7					
E- 6	1	.0	1	1.5		2.2		3.3		4.7		6.8	
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2	
E-24	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2	
	1.1	1.3	1.6	2.0	2.4	3.0	3.6	4.3	5.1	6.2	7.5	9.1	

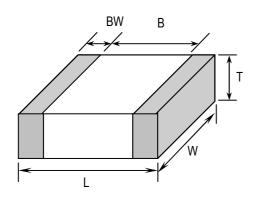
4. Operation Temperature Range

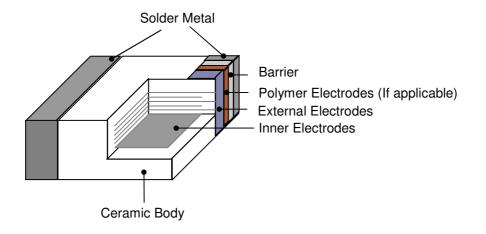
Class	Characteristic	Temperature Range	Reference Temp.
Π	X7R (X)	-55℃ ~ +125℃	25°C

5. Storage Condition

Storage Temperature : 5 to 40°C

Relative Humidity : 20 to 70 %


Storage Time: 12 months max.


6. Dimensions

6.1 Configuration and Dimension :

					Unit:mm
TYPE	L	W	Т	B (min)	BW (min)
1206	3.20± 0.30	1.60± 0.20	1.60± 0.20	1.50	0.30

6.2 Termination Type :

7. Performance

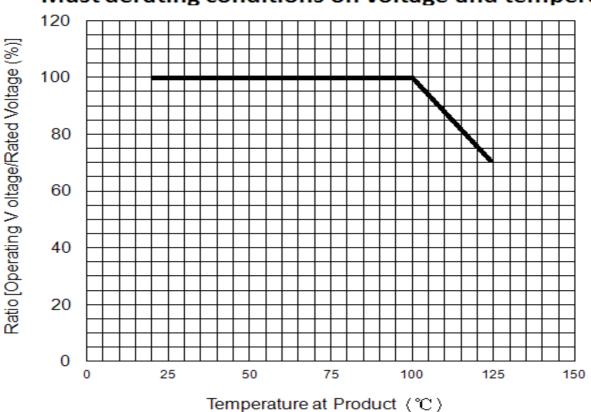
				T LO IV			
No.		em	Specification	Test Condition			
1		ual	No abnormal exterior appearance	Visual Inspection			
2		nsion	See Page 2	Visual Inspection			
3		ation tance	500/C Ω min.	Applied Voltage: Rated Voltage Charge Time : 60±5 sec. Charge-Discharge current shall be less than 50mA			
				current.			
4	Capacitance	Class II	Within The Specified Tolerance	Class II :			
5	D.F.	Class II	X7R: 10% max.	Frequency Voltage X7R 1KHz±10% *1.0±0.2Vrms or 0.5±0.2Vrms 0.5±0.2Vrms			
				Perform a heat temperature at $150\pm5^{\circ}$ for 30min then place room temp. for 24±2hr.			
6		anding age	No dielectric breakdown or mechanical breakdown	250% of the rated voltage for 1~5 sec. charge/discharge Current is less than 50mA.			
7	Temperatur Capacitanc Coefficient	e Class e II	Char. Temp. Range Cap. Change(%) X7R -55°℃ ~+125°℃ ± 15%	Class II : <u>C2-C1</u> ×100% C1 C1:Capacitance At Standard Temperature(25°C) C2: Capacitance At Test Temperature (T2) under 1.0Vrms.			
8	Adhesive Strength No indication of peeling shall of Of Termination terminal electrode.		No indication of peeling shall occur on the terminal electrode.	Pull force shall be applied for 10 ± 1 second. $02012N (= 0.2 \text{ Kg·f})$ $0402/06035N (= 0.5 \text{ Kg·f})$ $\geq 080510N (= 1.0 \text{ Kg·f})$ \blacksquare </td			
9	to Flexure of Substrate C-Meter C-Meter Char. Capacitance Change		No mechanical damage or capacitance change more than the following table.	mm/sec.			
			Char. Cap. Change	The duration of the applied forces shall be 5 ± 1sec Bending C Meter 45±1mm 45±1mm			

MULTILAYER CERAMIC CHIP CAPACITORS

NCC-024-2208

No.	lte	m	SI	pecification	Test Condition		
10	Solder	ability	More than 90% of the terminal surface is to be soldered newly, so metal part does not come out or dissolve.		Solder Temperature : $245 \pm 5^{\circ}$ C Dip Time : 5 ± 0.5 sec Immersing Speed : $25\pm10\%$ mm/s Solder : Lead Free Solder Flux :Rosin Preheat : At 80~120 °C for 10~30sec.		
11	Resistance To Soldering Heat	Appear- ance Capacit- ance D.F. Class II Insulation Resistance	No mechanical dama Class II X7R X7R: 10% max. To satisfy the specifi	$\leq \pm 7.5\%$ of initial value	Class II capacitor shall be set for 48 ± 4 hours at room temperature after one hour heat treatment at $150 \pm 0/-10^{\circ}$ C before initial measure. Preheat : at $150\pm10^{\circ}$ C for $60\sim120$ sec. Dip : solder temperature of $260\pm5^{\circ}$ C Dip Time : 10 ± 1 sec. Immersing Speed : $25\pm10^{\circ}$ mm/s Flux :Rosin Measure at room temperature after cooling for		
12	Tempera ture Cycle	Appear- ance Capacit- ance D.F. Class II Insulation Resistance	No mechanical dama Class II X7R X7R: 10% max. To satisfy the specifi	$\leq \pm 7.5\%$ of initial value	Class II : 48 ± 4 HoursClass II capacitor shall be set for 48±4 hours at room temperature after one hour heat treatment at 150 +0/-10°C before initial measure.Capacitor shall be subjected to five cycles of the temperature cycle as following:Step Temp.(°C) Time(min)1Min Rated Temp. +0/-322533Max Rated Temp. +3/-0304253Measure at room temperature after cooling for Class II : 48 ± 4 Hours		
13	Humidity	Appear- ance Capacit- ance D.F. Class II Insulation Resistance	No mechanical dama Characteristic X7R X7R: 20% max. 50/C Ω min.	age shall occur. Cap. Change ≤ ±12.5% of initial value	Class II : 48 \pm 4 Hours Class II capacitor shall be set for 48 \pm 4 hours at room temperature after one hour heat treatment at 150 +0/-10 °C before initial measure. Temperature : 40 \pm 2°C Relative Humidity : 90 ~ 95%RH Test Time : 500 +12/-0Hr Measure at room temperature after cooling for Class II : 48 \pm 4 Hours		

MULTILAYER CERAMIC CHIP CAPACITORS


NCC-024-2208

No.	Ite	m	Spe	ecification	Test Condition		
14	Humidity Load	Appear- ance	No mechanical dama	age shall occur.	Class II capacitors applied DC voltage of the rated voltage is applied for one hour at maximum		
		Capacit-	Characteristic	Cap. Change	operation temperature $\pm 3^\circ C$ then shall be set for		
		ance	X7R	≤ ±12.5% of initial value	48± 4 hours at room temperature and the initial		
					measurement shall be conducted.		
		D.F.	X7R: 20% max.		Applied Voltage :Rated Voltage		
		Class II	X/11. 20 /0 max.		Temperature : 40± 2°C		
		Insulation	25/C Ω min.		Relative Humidity : 90 ~ 95%RH		
		Resistance			Test Time : 500 +12/-0Hr		
		ricolotariec			Current Applied : 50 mA Max.		
					Class II capacitor for Cap \geq 103(10nF)		
					shall be set for 24 ± 2 hours at room temperature		
					after one hour heat treatment at $150 + 0/-10^{\circ}C$		
					before final measure.		
					Class Π , capacitor for Cap < 102(10 pE)		
					Class II capacitor for Cap<103(10nF) Measure at room temperature after cooling for		
					48 ± 4 Hours.		
15	High	Appear-	No mechanical dama	age shall occur	The capacitors applied DC testing voltage is		
	Temperature				applied for one hour at maximum operation		
	Load	Capacit-	Characteristic	Cap. Change	temperature $\pm 3^{\circ}$ C then shell be set for 48± 4		
	(Life Test)	ance	X7R				
	(,	D.F.	X7R: 20% max.		measurement shall be conducted.		
		Class ∏			Applied Voltage: Rated Voltage		
			50/C Ω min.		Temperature: max. operation temperature		
		Resistance			Test Time : 1000 +48/-0 Hr		
					Current Applied : 50mA Max		
					Class II capacitor for Cap \geq 103(10nF)		
					shall be set for 24±2 hours at room temperature		
					after one hour heat treatment at 150 +0/-10 $^\circ$ C		
					before final measure.		
					Class II capacitor for Cap < 103(10nF)		
					Measure at room temperature after cooling for		
					48 ± 4 Hours.		
16	Vibration	Appear-	No mechanical dama	age shall occur	Solder the capacitor on P.C. board.		
		ance		······································			
		Capacit-	Within the specified t	olerance	Vibrate the capacitor with amplitude of		
		ance			1.5mm P-P changing the frequencies from 10Hz to 55Hz and back to 10Hz		
		D.F.	To satisfy the speci	ified initial value	in about 1 min.		
		Class II					
		Insulation	To satisfy the speci	ified initial value	Repeat this for 2 hours each in 3 perpendicular		
		Resistance	•		directions.		

When operating at temperature range from 100° C to 125° C, the operation shall be carried out at a derating voltage or less as shown below

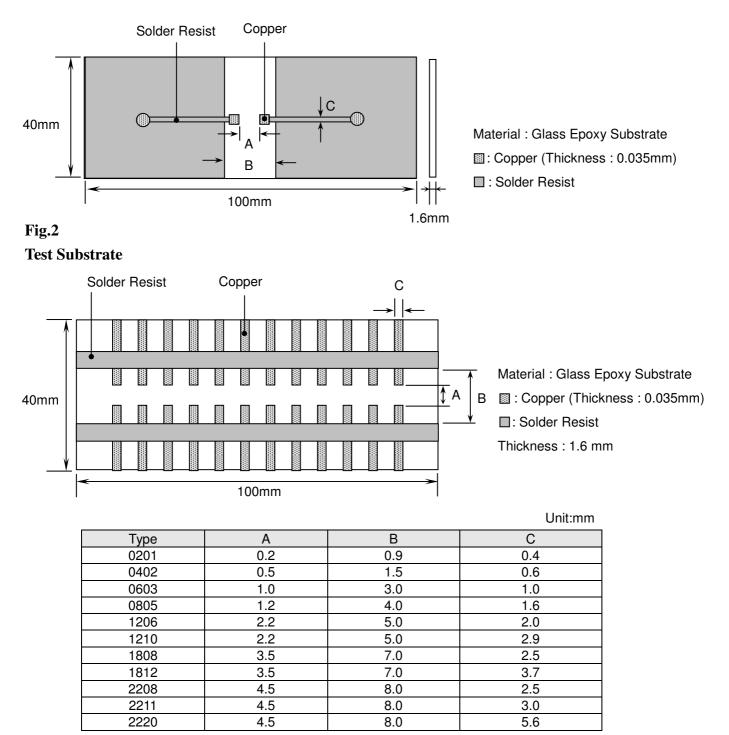
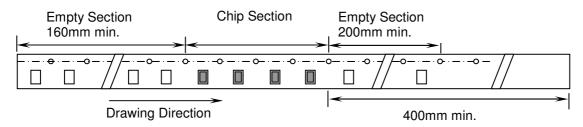

Must derating conditions on voltage and temperature

Fig.1

P.C. Board for Bending Strength Test



8. Packing

8.1 Bulk Packing

According to customer request.

8.2 Chip Capacitors Tape Packing

8.3 Material And Quantity

Tape	0201	0402	0603/0805	
Material	T≦0.39mm	T≦0.70mm	T≦1.00mm	T>1.00mm
Paper	15,000 pcs/Reel	10,000 pcs/Reel	4,000 pcs/Reel	NA
Plastic	NA	NA	NA	3,000 pcs/Reel

Tape		1206	
Material	T≦1.00mm	1.00 mm $<$ T \leq 1.25 mm	T>1.25mm
Paper	4,000 pcs/Reel	NA	NA
Plastic	NA	3,000 pcs/Reel	2,000 pcs/Reel

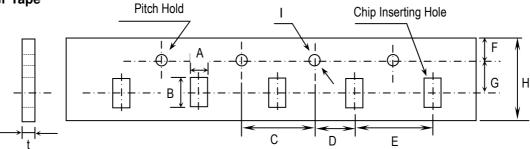
Tape		1808/1210	
Material	T≦1.25mm	1.25 mm $<$ T \leq 2.40 mm	T>2.40mm
Paper	NA	NA	NA
Plastic	3,000 pcs/Reel	1,000/2,000 pcs/Reel	500/700/1,000 pcs/Reel


Tape	1812/2211/2220		1825/2	2208	
Material	T≦2.20mm	T>2.20mm	T≦2.20mm	T>2.20mm	T≦2.20mm
Paper	NA	NA	NA	NA	NA
Plastic	1,000 pcs/Reel	700 pcs/Reel	700 pcs/Reel	400 pcs/Reel	1,000 pcs/Reel

NA : Not Available

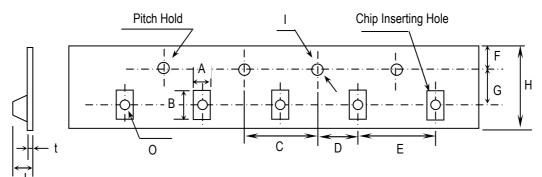
8.4 Cover Tape Reel Off Force

- 8.4.1 Peel-Off Force
 - 5 g·f \leq Peel-Off Force \leq 70 g·f
- 8.4.2 Measure Method



MULTILAYER CERAMIC CHIP CAPACITORS

8.5 Paper Tape



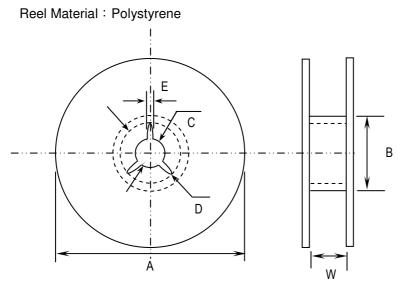
Unit:mm

TYPE	A	В	С	D	E
0201	0.37± 0.1	0.67± 0.1	4.00± 0.1	2.00± 0.05	2.00± 0.1
0402	0.61± 0.1	1.20± 0.1			
0603	1.10± 0.2	1.90± 0.2			4.00± 0.1
0805	1.50± 0.2	2.30± 0.2			
1206	1.90± 0.2	3.50± 0.2			
1210	2.90± 0.2	3.60± 0.2			

TYPE	F	G	Н		t
0201	1.75± 0.10	3.50± 0.05	8.0± 0.30	<i>φ</i> 1.50 +0.10/-0	1.10 max.
0402					
0603					
0805					
1206					
1210					

8.6 Plastic Tape

Unit:mm

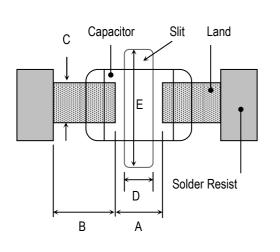

Туре	A	В	С	D	E	F
0805	1.5±0.2	2.3±0.2	4.0± 0.1	2.0± 0.05	4.0± 0.1	1.75± 0.1
1206	1.9±0.2	3.5±0.2				
1210	2.9±0.2	3.6±0.2				
	2.95±0.2	3.65±0.2		2.0± 0.10	8.0± 0.1	
1808	2.5±0.2	4.9±0.2		2.0± 0.05	4.0± 0.1	
1812	3.6±0.2	4.9±0.2			8.0± 0.1	
1825	6.9±0.2	4.9±0.2				
2208	2.5±0.2	6.1±0.2				
2211	3.2±0.2	6.1±0.2				
2220	5.4±0.2	6.1±0.2				
2225	6.9±0.2	6.1±0.2				

Туре	G	Н		J	t	0
0805	3.5 ± 0.05	8.0± 0.3	φ 1.5+0.1/-0	3.0 max.	0.3 max.	1.0± 0.1
1206						
1210						
	5.5± 0.10	12.0 ± 0.3			0.35 ± 0.05	NA
1808	5.5± 0.05			4.0 max.	0.3 max.	1.5± 0.1
1812						
1825						
2208						
2211						
2220						
2225						

8.7 Reel Dimensions

Unit:mm

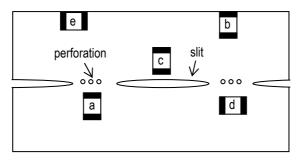
Туре	А	В	С	D	E	W
0201	φ 382 max	arphi 50 min	φ 13± 0.5	φ 21± 0.8	2.0±0.5	10± 0.15
0402						
0603						
0805						
1206						
1210						
1808	φ 178±2.0	arphi 60±2.0				13±0.3
1812						
1825						
2208						
2211						
2220						
2225						


Precautionary Notes:

1. Storage

Store the capacitors where the temperature and relative humidity don't exceed 40 °C and 70%RH. We recommend that the capacitors be used within 12 months from the date of manufacturing. Store the products in the original package and do not open the outer wrapped, polyethylene bag, till just before usage. If it is open, seal it as soon as possible or keep it in a desiccant with a desiccation agent.

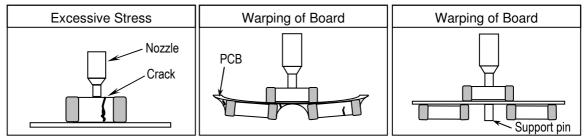
2. Construction of Board Pattern


Improper circuit layout and pad/land size may cause excessive or not enough solder amount on the PC board. Not enough solder may create weak joint, and excessive solder may increase the potential of mechanical or thermal cracks on the ceramic capacitor. Therefore we recommend the land size to be as shown in the following table: 2.1 Size and recommend land dimensions for reflow soldering

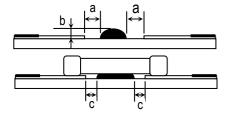
Chip	(mm)	Land (mm)						
L	W	А	В	С	D	E		
0.60	0.30	0.2~0.3	0.2~0.4	0.2~0.4				
1.00	0.50	0.3~0.5	0.3~0.5	0.4~0.6				
1.60	0.80	0.4~0.6	0.6~0.7	0.6~0.8				
2.00	1.25	0.7~0.9	0.6~0.8	0.8~1.1				
3.20	1.60	2.2~2.4	0.8~0.9	1.0~1.4	1.0~2.0	3.2~3.7		
3.20	2.50	2.2~2.4	1.0~1.2	1.8~2.3	1.0~2.0	4.1~4.6		
4.60	2.00	2.8~3.4	1.8~2.0	1.5~1.8	1.0~2.8	3.6~4.1		
4.60	3.20	2.8~3.4	1.8~2.0	2.3~3.0	1.0~2.8	4.8~5.3		
4.60	6.35	2.8~3.4	1.8~2.0	5.1~5.8	1.0~4.0	7.1~8.3		
5.70	2.00	4.0~4.6	2.0~2.2	1.5~1.8	1.0~4.0	3.6~4.1		
5.70	2.80	4.0~4.6	2.0~2.2	2.0~2.6	1.0~4.0	4.4~4.9		
5.70	5.00	4.0~4.6	2.0~2.2	3.5~4.8	1.0~4.0	6.6~7.1		
5.70	6.35	4.0~4.6	2.0~2.2	5.1~5.8	1.0~4.0	7.1~8.3		
	L 0.60 1.00 2.00 3.20 4.60 4.60 4.60 5.70 5.70 5.70	0.60 0.30 1.00 0.50 1.60 0.80 2.00 1.25 3.20 1.60 3.20 2.50 4.60 2.00 4.60 3.20 4.60 6.35 5.70 2.00 5.70 2.80 5.70 5.00	L W A 0.60 0.30 0.2~0.3 1.00 0.50 0.3~0.5 1.60 0.80 0.4~0.6 2.00 1.25 0.7~0.9 3.20 1.60 2.2~2.4 3.20 2.50 2.2~2.4 4.60 3.20 2.8~3.4 4.60 6.35 2.8~3.4 5.70 2.00 4.0~4.6 5.70 2.80 4.0~4.6 5.70 5.00 4.0~4.6	L W A B 0.60 0.30 0.2~0.3 0.2~0.4 1.00 0.50 0.3~0.5 0.3~0.5 1.60 0.80 0.4~0.6 0.6~0.7 2.00 1.25 0.7~0.9 0.6~0.8 3.20 1.60 2.2~2.4 0.8~0.9 3.20 2.50 2.2~2.4 1.0~1.2 4.60 2.00 2.8~3.4 1.8~2.0 4.60 6.35 2.8~3.4 1.8~2.0 5.70 2.00 4.0~4.6 2.0~2.2 5.70 2.80 4.0~4.6 2.0~2.2 5.70 5.00 4.0~4.6 2.0~2.2	L W A B C 0.60 0.30 0.2~0.3 0.2~0.4 0.2~0.4 1.00 0.50 0.3~0.5 0.3~0.5 0.4~0.6 1.60 0.80 0.4~0.6 0.6~0.7 0.6~0.8 2.00 1.25 0.7~0.9 0.6~0.8 0.8~1.1 3.20 1.60 2.2~2.4 0.8~0.9 1.0~1.4 3.20 2.50 2.2~2.4 1.0~1.2 1.8~2.3 4.60 2.00 2.8~3.4 1.8~2.0 1.5~1.8 4.60 3.20 2.8~3.4 1.8~2.0 5.1~5.8 5.70 2.00 4.0~4.6 2.0~2.2 1.5~1.8 5.70 2.80 4.0~4.6 2.0~2.2 2.0~2.6 5.70 5.00 4.0~4.6 2.0~2.2 3.5~4.8	L W A B C D 0.60 0.30 0.2~0.3 0.2~0.4 0.2~0.4 1.00 0.50 0.3~0.5 0.3~0.5 0.4~0.6 1.60 0.80 0.4~0.6 0.6~0.7 0.6~0.8 2.00 1.25 0.7~0.9 0.6~0.8 0.8~1.1 3.20 1.60 2.2~2.4 0.8~0.9 1.0~1.4 1.0~2.0 3.20 2.50 2.2~2.4 1.0~1.2 1.8~2.3 1.0~2.0 4.60 2.00 2.8~3.4 1.8~2.0 1.5~1.8 1.0~2.8 4.60 6.35 2.8~3.4 1.8~2.0 5.1~5.8 1.0~4.0 5.70 2.00 4.0~4.6 2.0~2.2 1.5~1.8 1.0~4.0 5.70 2.80 4.0~4.6 2.0~2.2 1.5~1.8 1.0~4.0 5.70 2.80 4.0~4.6 2.0~2.2 3.5~4.8 1.0~4.0		

2.2 Mechanical strength varies according to location of chip capacitors on the P.C. board. Design layout of components on the PC board such a way to minimize the stress imposed on the components, upon flexure of the boards in depanelization or other processes.

Component layout close to the edge of the board or the "depanelization line" is not recommended. Susceptibility to stress is in the order of: a>b>c and d>e



2.3 Layout Recommendation


Example	Use of Common Solder Land	Solder With Chassis	Use of Common Solder Land With Other SMD
Need to Avoid	Lead Wire Chip Solder Adhesive PCB Solder Land	Chassis \downarrow Excessive Solder \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Solder Land
Recommendation	Lead Wire Chip Solder Resist	Solder Resist	

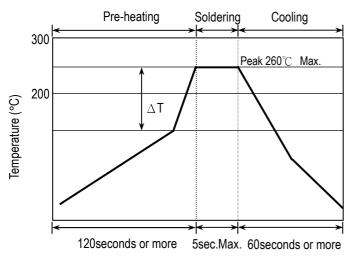
3. Mounting

3.1 Sometimes crack is caused by the impact load due to suction nozzle in pick and place operation. In pick and place operation, if the low dead point is too low, excessive stress is applied to component. This may cause cracks in the ceramic capacitor, therefore it is required to move low dead point of a suction nozzle to the higher level to minimize the board warp age and stress on the components. Nozzle pressure is typically adjusted to 1N to 3N (static load) during the pick and place operation.

3.2 Amount of Adhesive

а	0.2mm min.			
b	70 ~ 100 µm			
С	Do not touch the solder land			

NCC-024-2208



4. Soldering

4.1. Wave Soldering

Most of components are wave soldered with solder at Peak Temperature.. Adequate care must be taken to prevent the potential of thermal cracks on the ceramic capacitors. Refer to the soldering methods below for optimum soldering benefits.

Recommend flow soldering temperature Profile

Soldering Method	Peak Temp.($^{\circ}$ C) / Duration (sec)
1206/0805/0603	∆T ≤ 100~150°C max.
Pb-Sn Solder	250°C (max.) / 3sec(max.)
Lead Free Solder	260°C (max.) / 5sec(max.)

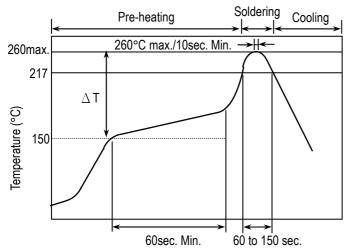
Recommended solder compositions

Sn-37Pb (Pb - Sn Solder)

Sn-3.0Ag-0.5Cu (Lead Free Solder)

To optimize the result of soldering, proper preheating is essential:

- 1) Preheat temperature is too low
 - a. Flux flows to easily
 - b. Possibility of thermal cracks
- 2) Preheat temperature is too high
 - a. Flux deteriorates even when oxide film is removed
 - b. Causes warping of circuit board
 - c. Loss of reliability in chip and other components


Cooling Condition:

Natural cooling using air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference (Δ T) between the solvent and the chips must be less than 100 °C.

4.2 Reflow Soldering

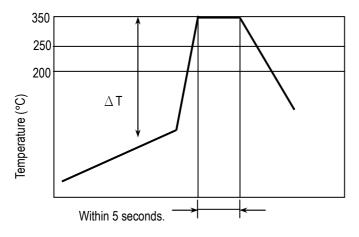
Preheat and gradual increase in temperature to the reflow temperature is recommended to decrease the potential of thermal crack on the components. The recommended heating rate depends on the size of component, however it should not exceed 3 °C/Sec.

Recommend reflow profile for Lead-Free soldering temperature Profile (J-STD-020E)

Soldering Method	Change in Temp.(°C)
1206 and Under	$\Delta T \leq 190 \ {}^\circ C$
1210 and Over	Δ T \leq 130 $^{\circ}$ C

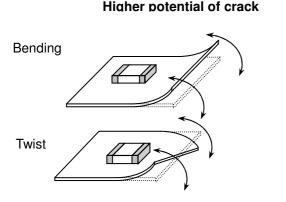
***** The cycles of soldering : Three times (max.)

Maximum Ramp-up = 3 °C/Sec.


Maximum Ramp-down Rate = 6 °C/Sec.

4.3 Hand Soldering

Sudden temperature change in components, results in a temperature gradient recommended in the following table, and therefore may cause internal thermal cracks in the components. In general a hand soldering method is not recommended unless proper preheating and handling practices have been taken. Care must also be taken not to touch the ceramic body of the capacitor with the tip of solder Iron.


Soldering Method	Change in Temp.(℃)
1206 and Under	$\Delta T \leq 150 \ ^{\circ}\mathrm{C}$
1210 and Over	Δ T \leq 130 $^{\circ}$ C

How to Solder Repair by Solder Iron

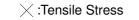
- 1) Selection of the soldering iron tip
 - The required temperature of solder iron for any type of repair depends on the type of the tip, the substrate material, and the solder land size.
- 2) recommended solder iron condition
 - a.) Preheating Condition : Board and components should be preheated sufficiently at 150 ℃ or over, and soldering should be conducted with soldering iron as boards and components are maintained at sufficient temperatures.
 - b.) Soldering iron power shall not exceed 30 W.
 - c.) Soldering iron tip diameter shall not exceed 3mm.
 - d.) Temperature of iron tip shall not exceed 350 °C to perform the process within 5 seconds. (refer to MIL-STD-202G)
 - f.) Do not touch the ceramic body with the tip of solder iron. Direct contact of the soldering iron tip to ceramic body may cause thermal cracks.
 - g.) After soldering operation, let the products cool down gradually in the room temperature.

5. Handling after chip mounted

5.1 Proper handling is recommended, since excessive bending and twist of the board, depends on the orientation of the chip on the board, may induce mechanical stress and cause internal crack in the capacitor.

Lower potential of crack

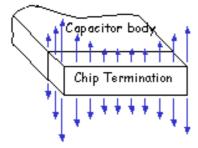
5.2 There is a potential of crack if board is warped due to excessive load by check pin

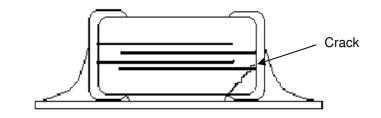


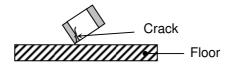
IHHEC is a trademark of Holy Stone Enterprise Co., Ltd

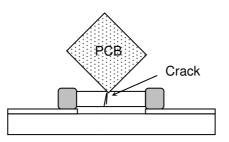
5.3 Mechanical stress due to warping and torsion.

- (a) Crack occurrence ratio will be increased by manual separation.
- (b) Crack occurrence ratio will be increased by tensile force , rather than compressive force.




O:Compressive Stress


Capacitor Stress Analysis



6. Handling of Loose Chip Capacitor

6.1 If dropped the chip capacitor may crack.

6.2 In piling and stacking of the P.C. boards after mounting for storage or handling, the corner of the P.C. board may hit the chip capacitor mounted on another board to cause crack.

7. Safekeeping condition and period

For safekeeping of the products, we recommend to keep the storage temperature between +5 to +40 ℃ and under humidity of 20 to 70% RH. The shelf life of capacitors is 12 months.

