

1. Scope

This specification is applies to Multilayer Ceramic Chip Capacitor (MLCC) for use in electric equipment for the voltage is ranging from 100V to 5KV.

The MLCC support for Lead-Free wave and reflow soldering, and electrical characteristic and reliability are same as before. (This product compliant with the RoHS.)

2. Parts Number Code

С	1210	X	104	K	251	Т
(1)	(2)	(3)	(4)	(5)	(6)	(7)

(1)Product

Product Code	
С	Multilayer Ceramic Chip Capacitor

(2)Chip Size

(2)Cmp Size		
Code	Length×Width	unit : mm(inch)
0201	0.60× 0.30	(.024× .011)
0402	1.00× 0.50	(.039× .020)
0603	1.60× 0.80	(.063× .031)
0805	2.00× 1.25	(.079× .049)
1206	3.20× 1.60	(.126× .063)
1210	3.20× 2.50	(.126× .098)
1808	4.60× 2.00	(.181× .079)
1812	4.60× 3.20	(.181× .125)
1825	4.60× 6.35	(.181× .250)
2208	5.70× 2.00	(.220× .197)
2211	5.70× 2.80	(.220× .110)
2220	5.70× 5.00	(.220× .197)
2225	5.70× 6.35	(.220× .250)

(3) Temperature Characteristics

Code	Temperature	Temperature	Temperature
	Characteristic	Range	Coefficient
Ν	NPO	-55°℃~+125°℃	30 ppm/°C
L	SL	-30°C ~+85°C	+350~-1000ppm
X	X7R	-55℃~+125℃	± 15%
В	X5R	-55°C ~+85°C	± 15%
S	X6S	-55°C ~+105°C	± 22%
Υ	Y5V	-30°C ~+85°C	+22/-82%
Z	Z5U	+10°C ~+85°C	+22/-56%
Е	Y5U	-30°C ~+85°C	+22/-56%

(4)Capacitance

(4)Capacitance	unit :pico farads(pF)
Code	Nominal Capacitance (pF)
5R0	5.0
120	12.0
151	150.0
222	2,200.0
103	10,000.0
104	100,000.0
105	1,000,000.0
106	10,000,000.0

*. If there is a decimal point, it shall be expressed by an

(5) Capacitance Tolerance

Code	Tolerance	Nominal Capacitance
В	± 0.10 pF	Less Than 10 pF
С	± 0.25 pF	(Include 10 pF)
D	± 0.50 pF	
F	± 1.00 pF	
F	± 1.00 %	More Than 10 pF
G	± 2.00 %	
J	± 5.00 %	
K	± 10.0 %	
М	± 20.0 %	
Z	+80/-20 %	

(6)Rated Voltage

Code	Rated Voltage (Vdc)
101	100
201	200
251	250
501	500
631	630
102	1,000
202	2,000
252	2,500
302	3,000
502	5,000

(7)Tapping

Code	Type	
T	Tape & Reel	
В	Bulk	

English capital letter R

Page: 1/15

3. Nominal Capacitance and Tolerance

3.1 Standard Combination of Nominal Capacitance and Tolerance

Class	Characteristic	Tolera	ance	Nominal Capacitance
I	NPO / SL	Less Then 10 pF	B (± 0.10 pF)	0.5,1,1.5,2,2.5,3
			C (± 0.25 pF)	0.5,1,1.5,2,2.5,3,3.5,4,4.5,5
			D (± 0.50 pF)	5,6,7,8,9,10
			F (± 1.00 pF)	6,7,8,9,10
		More Than 10 pF	F (±1.00 %)	E-12, E-24 series
			G (±2.00 %)	
			J (± 5.00 %)	
			K (± 10.0 %)	
П	X7R/X5R/X7E	K (± 10.0 %),	M (± 20.0 %)	E-3, E-6 series
	Y5V	M (± 20.0 %), Z	Z(+80/-20 %)	E- 3 series
	Z5U			
	Y5U			

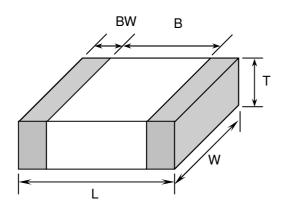
3.2 E series(standard Number)

•			-									
Standard No.		Application Capacitance										
E- 3	1.0				1.0 2.2					4	.7	
E- 6	1	.0	1	.5	2	.2	3	.3	4	.7	6	.8
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E-24	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
	1.1	1.3	1.6	2.0	2.4	3.0	3.6	4.3	5.1	6.2	7.5	9.1

4. Operation Temperature Range

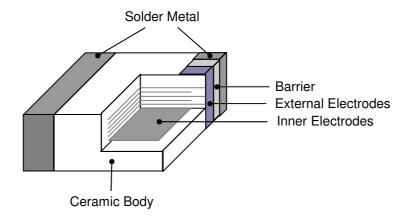
Class	Characteristic	Temperature Range	Reference Temp.
I	NPO	-55°C ~ +125°C	25 ℃
	SL	-25°C ~ +125°C	25 ℃
П	X7R	-55℃ ~ +125℃	25℃
	X5R	-55℃ ~ +85℃	25 ℃
	X6S	-55°C ~ +105°C	25 ℃
	Y5V	-30℃ ~ +85℃	25 ℃
	Z5U	+10℃ ~ +85℃	25 ℃
	Y5U	-30°C ~ +85°C	25 ℃
	Other	-25°C ~ +85°C	25 ℃

5. Storage Condition


Storage Temperature : 5 to 40° C Relative Humidity : 20 to 70 % Storage Time : 6 months max.

Page: 2/15

6. Dimensions


6.1 Configuration and Dimension:

Unit:mm

TYPE	L	W	T	B (min)	BW (min)
1210	3.20± 0.30	2.50± 0.20	1.25± 0.15	1.60	0.30

6.2 Termination Type :

7. Performance

No.	Item			Spe	ecific	ation		Test Condition		
1	Visua	<u> </u>	No at	onormal e	xteric	r appearance	Vis	Visual inspection		
2	Dimens			Page 3			_	sual inspection		
3		$\begin{array}{ccc} \text{Insulation} & \text{10,000M}\Omega\text{or 500/C}\Omega\\ \text{Resistance} & \text{Product Whichever Is Smaller} \end{array}$			V≦ V> Ch	≤500V, Rated >500V, Applied arge Time : 60 applied less the	Voltage d 500Vdc Osec.	ent		
4	Capacitance	Class Within The Specified Tolerance			• •	an John Curr	ent.			
4	Capacitarioc	I	***************************************	The second secon		Tolerande		Class I :		
		NPO/SL					١	NPO/SL		
		Class	Within	The Spec	ified	Tolerance	1 [Capacitance	Frequency	Voltage
		П	***************************************	тис орсс	mea	Tolerande		C≦100pF	1MHz±10%	1.0±0.2Vrms
] L	C>100pF	1KHz±10%	
5	Q	Class		Than 30pF				Class		
		I		& Below: (Frequ		Voltage
	Tan δ	NPO/SL	_	Capacitano	ce, p	•	-	X7R Z5U/Y5U	1KHz±10%	1.0±0.2Vrms
	ian o	Class II		nar. 7R		Maximum 2.5%			1KHz±10%	1.0±0.2Vrms at 150±5°C for
		11		/Y5U		4.0%		30min. then pla		
6	Withstan	ding		electric br	eakd		-	< 500V : 200°		
	Voltag	-	mechanical breakdown				500V ≤ V < 1000V: 150% Rated Voltage			
							1000≦V:120% Rated Voltage			
							for 1~5 sec. Current is limited to less than			
							50	mA.		
							th	Withstanding vone element in a ison hip surface, at vol	olation fluid preve	
7	Temperature	Class I	Char.	Temp. Ra	nge	Cap. Change(%)	С	lass I :		
	Capacitance			-55℃~+1		± 30 ppm/°C] _		[2-T1)] × 100%	%
	Coefficient			-30°C∼+8		+350~-1000ppm	4	lass ∏:	1000/	
		Class		Temp. Ra		Cap. Change(%)	Τ₁	(C2-C1)/C1 : Standard tem		\sim 1
		П				± 15%		: Test tempera		C)
			Y5U	-30°C ~+8		+22% ~-56%				mperature(25°C)
			Z5U	+10℃~+	85℃	+22% ~-56%		:: Capacitance		
8	Adhesive S					ng shall occur on				hall be applied
	of Termin	ation	the ter	minal elec	ctrode	9.	fo	or 10± 1 second	d.	
								_	5N·f	
									ļ	
9		Appear-	No me	chanical o	dama	ge shall be occur.	Ве	nding shall be	applied to the	1.0 mm with
		ance					1.	.0 mm/sec.		
	Flexure	C-Meter		itance Ch	<u> </u>				/	→ Bending
	of Substrate		Char.			o. Change]			Limit
			NPO			5.0%			Meter	
			SL X7R			5.0%	-	< 45±1mm	> <> n 45±1mm	
			X/R Y5U/Z	511		12.5% 30.0%	1	1021111111	0	
		l	100/2	50	T = ∓	00.0 /0	<u> </u>			

No.	Item	Specification	Test Condition

4.0	0.11	1 111.	More than 90% of th	no terminal surface	Solder Temperature : 245± 5°C		
10	Solder	ability	is to be soldered ne		Dip Time: 5 ± 0.5 sec.		
			does not come out of		Immersing Speed: 25±10% mm/s		
					Solder : H63A		
			→ //		Flux :Rosin		
					Preheat : At 80~120 ℃ for 10~30sec.		
11	Resistance		No mechanical dam	age shall occur.	Class II capacitor shall be set for 48±4 hours at		
	To	ance			room temperature after one hour heat		
	Soldering Heat	Capacit- ance	Characteristic	Cap. Change	treatment at 150 +0/-10℃ before initial measure.		
	Heat	ance	Class I	Within ± 2.5% or	Droboot : At 150 10°C For 60 100000		
			(NPO/SL)	±0.25pFwhichever	Dip: Solder Temperature of 260±5°C		
				is larger of initial value	Dip Time: 10 ± 1sec.		
			Class X7R	Within ± 10%	Immersing Speed : 25±10% mm/s		
			II Z5U/Y5U	Within ± 20%	Solder : H63A		
		Q	To satisfy the specif	ied initial value	Flux :Rosin		
		Class I			Magazira at room tamparatura after appling for		
		Tan δ	To satisfy the specif	ied initial value	Measure at room temperature after cooling for Class I: 24 ± 2 Hours		
		Class II Insulation	To potiofy the appoin	iad initial value	Class II: 48 ± 4 Hours		
		Resistance	To satisfy the specif	ied initial value			
		Withstand Voltage	To satisfy the specif	ied initial value			
12	Tempera	Appear-	No mechanical dam	age shall occur	Class ☐ capacitor shall be set for 48± 4 hours at		
12	ture	ance			room temperature after one hour heat treatment		
	Cycle	Capacit-	Characteristic	Cap. Change	at 150 +0/-10 $^{\circ}$ before initial measure.		
		ance	Class I	Within ± 2.5% or			
			(NPO/SL)	±0.25pFwhichever			
				is larger of initial value	the temperature cycle as following:		
			Class X7R	Within ± 7.5%	Step Temp.(°C) Time(min)		
			II Z5U/Y5U	Within ± 20%	1 Min Rated Temp. +0/-3 30 2 25 3		
		Q	To satisfy the specif		2 25 3 3 Max Rated Temp. +3/-0 30		
		Class I	, ,		4 25 3		
		Tan δ	To satisfy the specif	ied initial value	Measure at room temperature after cooling for		
		Class II	To potiofy the aposif	iod initial value	Class I :24 ± 2 Hrs		
		Resistance	To satisfy the specif	ieu iriiliai vaiue	Class II :48 ± 4 Hrs		
		ricolotarioc			Solder the capacitor on P.C. board shown in		
					Fig 2. before testing.		
13	Humidity	Appear-	No mechanical dam	age shall occur	Class II capacitor shall be set for 48± 4 hours		
		ance Capacit-	Characteristic	Can Chango	at room temperature after one hour heat treatment at 150+0/-10 °C before initial		
		ance		Cap. Change Within ± 5.0% or	measure.		
		41100		£0.5pF whichever is			
			` '	arger of initial value			
			Class X7R \	Nithin ± 15%	Test Time : 500 + 12/-0Hr		
				Within ± 30%			
		Q	More Than 30pF : C		Measure at room temperature after cooling for		
		Class I	30pF & Below: Q ≧		Class I : 24 ± 2Hrs Class II : 48 ± 4Hrs		
		Tan δ Class Π	Char. X7R	Maximum 5.0%	5/400 I . 10 I HIII0		
		Olass II	Z5U/Y5U	5.0%	Solder the capacitor on P.C. board shown in		
		Insulation	1,000M Ω or 50/C		Fig 2. before testing.		
		Resistance	-				

Page : 5/15

HVC-008-0807

14	High	Appear-	No me	echanical c	lam	age shall occur	ı	ass	<u> </u>	
	Temperat.	ance	01			0 0	(following table) is applied for one hour at			
	Load	Capacit-		aracteristic		Cap. Change	1	maximum operation temperature ±3℃ then		
		ance	Class			Within ±3.0% or	l		urs at room temperature	
			(NPO/	SL)		± 0.3pFwhichever	ı	d the initial measurer	ment shall be	
			01	\/7D		is larger		nducted.		
			Class	X7R		Within ± 15%	Αŗ	oplied Voltage :		
			П	Z5U/Y5		Within ± 30%				
		Q Olasa T		Than 30pF				Rated Voltage	Applied Voltage	
		Class I Tan δ			≤ 1	275 + 2.5× C		V≤250Vdc	150%Rated Voltage	
		ran ∂ Class II		nar. 7R		maximum 5.09/		Less Than 1KVdc	120%Rated Voltage	
		Class II		/Y5U		5.0% 5.0%		More Than	100%Rated Voltage	
		Inculation			`	whichever is		1KVdc(include 1KV)	100 /or lated voltage	
		Resistance	,			(C in Farad)				
		ricsistarioc	Siriano	1.		(O III i alaa)	12	210/100V capacitance	e more than 1.0uF	
								plied voltage of 120%		
								mperature : max. ope		
								est Time: 1000 +12/-0		
								urrent Applied: 50 m/		
								easure at room tempe ass I : 24 \pm 2 Hours	erature after cooling for	
								ass $I: 24 \pm 2 \text{ Hours}$ ass $II: 48 \pm 4 \text{ Hours}$		
45	\ /!! .!					1 11			DO D	
15	Vibration	Appear-	No me	echanical o	iam	age shall occur			n P.C. Board shown in	
		ance Canacit	Ch	aracteristic		Can Change		ig 2. before testing.		
		Capacit- ance	Class		<i>;</i>	Cap. Change Within ± 2.5% or		librata the capacitor v	vith amplitude of 1.5mm	
		ance	(NPO/			± 0.25pFwhichever			uencies from 10Hz to	
			(INFO)	SL)		is larger		55Hz and back to 10H		
			Class	X7R		Within ± 7.5%	ľ	or iz and baok to Tor	12 111 about 1 111111.	
			∏	Z5U/Y5	11	Within ± 20%	Re	epeat this for 2 hours	each in 3perpendicular	
		Q				ed initial value		rections.		
		Class I	io sai	isiy iiic spi	CUIII	ca miliai value				
		Tan δ	To sat	isfy the sp	ecifi	ed initial value				
		Class II	.o oat	.c., 1110 op		od miliai vaido				
			To sat	sfy the sp	ecifi	ed initial value				
		Resistance)						

Fig.1
P.C. Board for Bending Strength Test

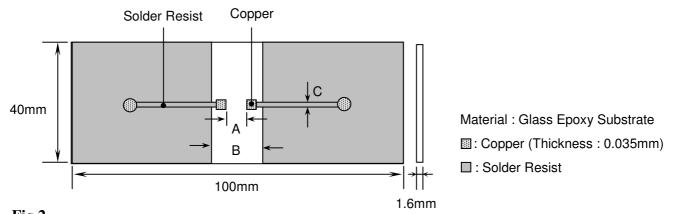
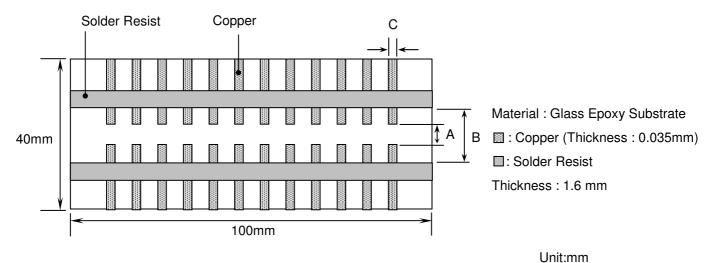
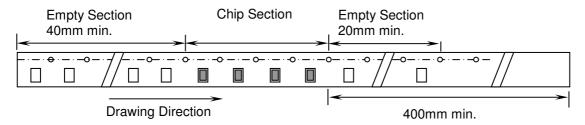



Fig.2 Test Substrate

Type	Α	В	С
0201	0.2	0.9	0.4
0402	0.5	1.5	0.6
0603	1.0	3.0	1.0
0805	1.2	4.0	1.6
1206	2.2	5.0	2.0
1210	2.2	5.0	2.9
1808	3.5	7.0	2.5
1812	3.5	7.0	3.7
2208	4.5	8.0	2.5
2211	4.5	8.0	3.0
2220	4.5	8.0	5.6

Page: 7/15



8. Packing

8.1 Bulk Packing

According to customer request.

8.2 Chip Capacitors Tape Packing

8.3 Material And Quantity

Tape	0201	0201 0402		0805
Material	T≦0.33mm	T≦0.55mm	T≦0.90mm	T>0.90mm
Paper	15,000 pcs/Reel	10,000 pcs/Reel	4,000 pcs/Reel	NA
Plastic	NA	NA	NA	3,000 pcs/Reel

Tape		1206	1210/1808		
Material	T≦0.90mm	0.90mm < T ≤ 1.25mm	T>1.25mm	T≦1.25mm	T>1.25mm
Paper	4,000 pcs/Reel	NA	NA	NA	NA
Plastic	NA	3,000 pcs/Reel	2,000 pcs/Reel	3000 pcs/Reel	2000 pcs/Reel

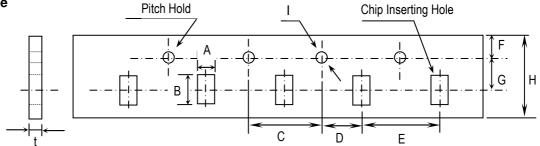
Tape	1812/1825	/2211/2220	22	2208	
Material	Material T≦2.20mm T>2.20mm		T≦2.20mm	T>2.20mm	T≦2.20mm
Paper	Paper NA		NA	NA	NA
Plastic	1000 pcs/Reel	700 pcs/Reel	1000 pcs/Reel	400 pcs/Reel	1000 pcs/Reel


NA: Not Available

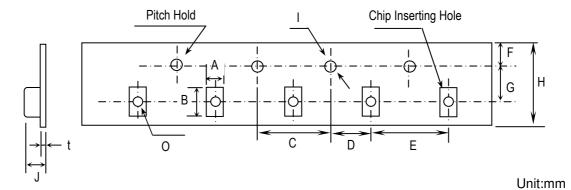
8.4 Cover Tape Reel Off Force

9.4.1 Peel-Off Force

 $5 g \cdot f \leq Peel-Off Force \leq 70 g \cdot f$


9.4.2 Measure Method

Page: 8/15

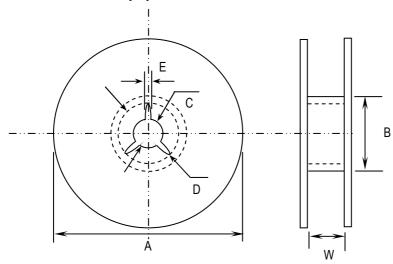


Unit:mm

TYPE	Α	В	С	D	E
0201	0.37± 0.1	0.67± 0.1	4.00± 0.1	2.00± 0.05	2.00± 0.1
0402	0.61± 0.1	1.20± 0.1			
0603	1.10± 0.2	1.90± 0.2			4.00± 0.1
0805	1.50± 0.2	2.30± 0.2			
1206	1.90± 0.2	3.50± 0.2			
1210	2.90± 0.2	3.60± 0.2			

TYPE	F	G	Н		t
0201	1.75± 0.10	3.50± 0.05	8.0± 0.30	φ 1.50 +0.10/-0	1.10 max.
0402					
0603					
0805					
1206					
1210					

8.6 Plastic Tape


Type	Α	В	С	D	E	F
0805	1.5±0.2	2.3±0.2	4.0± 0.1	2.0± 0.05	4.0± 0.1	1.75± 0.1
1206	1.9±0.2	3.5±0.2				
1210	2.9±0.2	3.6±0.2				
1808	2.5±0.2	4.9±0.2				
1812	3.6±0.2	4.9±0.2			8.0± 0.1	
1825	6.9±0.2	4.9±0.2				
2208	2.5±0.2	6.1±0.2				
2211	3.2±0.2	6.1±0.2				
2220	5.4±0.2	6.1±0.2				
2225	6.9±0.2	6.1±0.2				

Туре	G	Н	I	J	t	0
0805	3.5± 0.05	8.0± 0.3	φ 1.5+0.1/-0	3.0 max.	0.3 max.	0.15 min.
1206						
1210						
1808	5.5± 0.05	12.0 ± 0.3		4.0 max.		
1812						
1825						
2208						
2211						
2220						
2225						

8.7 Reel Dimensions

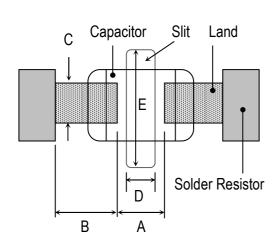
Reel Material : Polystyrene

Unit:mm

Type	А	В	С	D	E	W
0201	φ 382 max	arphi 50 min	φ 13± 0.5	φ 21± 0.8	2.0±0.5	10± 0.15
0402						
0603						
0805						
1206						
1210						
1808	φ 178±0.2	φ 60±0.2				13±0.3
1812						
1825						
2208						
2211						
2220						
2225						

Page: 10/15

Precautionary Notes:

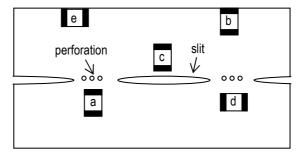

1. Storage

Store the capacitors where the temperature and relative humidity don't exceed 40 °C and 70%RH. We recommend that the capacitors be used within 6 months from the date of manufacturing. Store the products in the original package and do not open the outer wrapped, polyethylene bag, till just before usage. If it is open, seal it as soon as possible or keep it in a desiccant with a desiccation agent.

2. Construction of Board Pattern

Improper circuit layout and pad/land size may cause excessive or not enough solder amount on the PC board. Not enough solder may create weak joint, and excessive solder may increase the potential of mechanical or thermal cracks on the ceramic capacitor. Therefore we recommend the land size to be as shown in the following table:

2.1 Size and recommend land dimensions for reflow soldering .



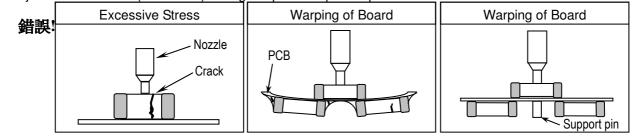
EIA Codo	Chip (mm)		Land (mm)				
EIA Code	L	W	Α	В	С	D	Е
0201	0.60	0.30	0.2~0.3	0.2~0.4	0.2~0.4		
0402	1.00	0.50	0.3~0.5	0.3~0.5	0.4~0.6		
0603	1.60	0.80	0.4~0.6	0.6~0.7	0.6~0.8		1
0805	2.00	1.25	0.7~0.9	0.6~0.8	0.8~1.1		1
1206	3.20	1.60	2.2~2.4	0.8~0.9	1.0~1.4	1.0~2.0	3.2~3.7
1210	3.20	2.50	2.2~2.4	1.0~1.2	1.8~2.3	1.0~2.0	4.1~4.6
1808	4.60	2.00	2.8~3.4	1.8~2.0	1.5~1.8	1.0~2.8	3.6~4.1
1812	4.60	3.20	2.8~3.4	1.8~2.0	2.3~3.0	1.0~2.8	4.8~5.3
1825	4.60	6.35	2.8~3.4	1.8~2.0	5.1~5.8	1.0~4.0	7.1~8.3
2208	5.70	2.00	4.0~4.6	2.0~2.2	1.5~1.8	1.0~4.0	3.6~4.1
2211	5.70	2.80	4.0~4.6	2.0~2.2	2.0~2.6	1.0~4.0	4.4~4.9
2220	5.70	5.00	4.0~4.6	2.0~2.2	3.5~4.8	1.0~4.0	6.6~7.1
2225	5.70	6.35	4.0~4.6	2.0~2.2	5.1~5.8	1.0~4.0	7.1~8.3

2.2 Mechanical strength varies according to location of chip capacitors on the P.C. board.

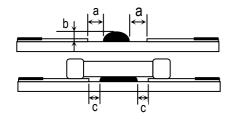
Design layout of components on the PC board such a way to minimize the stress imposed on the components, upon flexure of the boards in depanelization or other processes.

Component layout close to the edge of the board or the "depanelization line" is not recommended. Susceptibility to stress is in the order of: a>b>c and d>e

Page: 11/15



2.3 Layout Recommendation

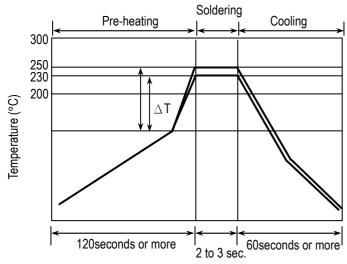

Example	Use of Common Solder Land	Solder With Chassis	Use of Common Solder Land With Other SMD
Need to Avoid	Chip Solder Adhesive PCB Solder Land	Chassis Excessive Solder a	Solder Land
Recommendation	Chip Solder Resist Adhesive PCB Solder Land	Solder Resist $\alpha > \beta$	

3. Mounting

3.1 Sometimes crack is caused by the impact load due to suction nozzle in pick and place operation. In pick and place operation, if the low dead point is too low, excessive stress is applied to component. This may cause cracks in the ceramic capacitor, therefore it is required to move low dead point of a suction nozzle to the higher level to minimize the board warp age and stress on the components. Nozzle pressure is typically adjusted to 1N to 3N (static load) during the pick and place operation.

3.2 Amount of Adhesive

Page: 12/15



4. Soldering

4.1. Wave Soldering

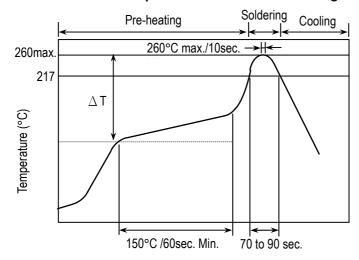
Most of components are wave soldered with solder at 230 to $250\,^{\circ}$ C. Adequate care must be taken to prevent the potential of thermal cracks on the ceramic capacitors. Refer to the soldering methods below for optimum soldering benefits.

Recommend flow soldering temperature Profile

Soldering Method	Change in Temp.($^{\circ}$ C)
1206 and Under	$\Delta T \le 100 \sim 130 \text{ max}.$

To optimize the result of soldering, proper preheating is essential:

- 1) Preheat temperature is too low
 - a. Flux flows to easily
 - b. Possibility of thermal cracks
- 2) Preheat temperature is too high
 - a. Flux deteriorates even when oxide film is removed
 - b. Causes warping of circuit board
 - c. Loss of reliability in chip and other components


Cooling Condition:

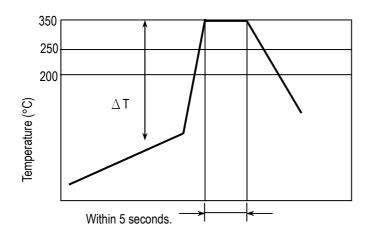
Natural cooling using air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference (Δ T) between the solvent and the chips must be less than 100 °C.

4.2 Reflow Soldering

Preheat and gradual increase in temperature to the reflow temperature is recommended to decrease the potential of thermal crack on the components. The recommended heating rate depends on the size of component, however it should not exceed $3\,^{\circ}\text{C/Sec}$.

Recommend reflow profile for Lead-Free soldering temperature Profile (MIL-STD-202G #210F)

※ The cycles of soldering : Twice (max.)


Soldering Method	Change in Temp.($^{\circ}$ C)
1206 and Under	∆T ≦ 190 °C
1210 and Over	∆T ≦ 130 °C

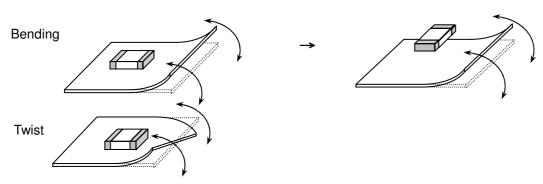
Page: 13/15

4.3 Hand Soldering

Sudden temperature change in components, results in a temperature gradient recommended in the following table, and therefore may cause internal thermal cracks in the components. In general a hand soldering method is not recommended unless proper preheating and handling practices have been taken. Care must also be taken not to touch the ceramic body of the capacitor with the tip of solder Iron.

Soldering Method	Change in Temp.(°C)
1206 and Under	Δ T \leq 190 $^{\circ}$ C
1210 and Over	Δ T \leq 130 $^{\circ}$ C

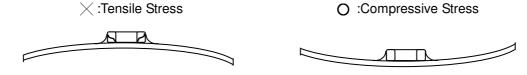
How to Solder Repair by Solder Iron

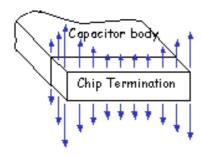

- 1) Selection of the soldering iron tip
 - The required temperature of solder iron for any type of repair depends on the type of the tip, the substrate material, and the solder land size.
- 2) recommended solder iron condition
 - a.) Preheat the substrate to (60 ℃ to 120 ℃) on a hot plate. Note that due to the heat loss, the actual setting of the hot plate may have to be higher. (For example 100 ℃ to 150 ℃)
 - b.) Soldering iron power shall not exceed 30 W.
 - c.) Soldering iron tip diameter shall not exceed 3mm.
 - d.) Temperature of iron tip shall not exceed 350 ℃., and the process should be finished within 5 seconds. (refer to MIL-STD-202G)
 - f.) Do not touch the ceramic body with the tip of solder iron. Direct contact of the soldering iron tip to ceramic body may cause thermal cracks.
 - g.) After soldering operation, let the products cool down gradually in the room temperature.

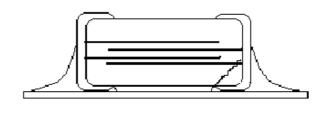
5. Handling after chip mounted

5.1 Proper handling is recommended, since excessive bending and twist of the board, depends on the orientation of the chip on the board, may induce mechanical stress and cause internal crack in the capacitor.

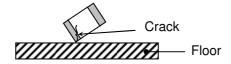
Higher potential of crack

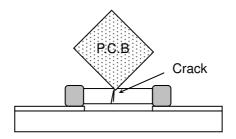

5.2 There is a potential of crack if board is warped due to excessive load by check pin


Page: 14/15



- 5.3 Mechanical stress due to warping and torsion.
 - (a) Crack occurrence ratio will be increased by manual separation.
 - (b) Crack occurrence ratio will be increased by tensile force, rather than compressive force.


Capacitor Stress Analysis



6. Handling of Loose Chip Capacitor

6.1 If dropped the chip capacitor may crack.

6.2 In piling and stacking of the P.C. boards after mounting for storage or handling, the corner of the P.C. board may hit the chip capacitor mounted on another board to cause crack.

7. Safekeeping condition and period

For safekeeping of the products, we recommend to keep the storage temperature between +5 to +40 °C and under humidity of 20 to 75% RH. The shelf life of capacitors is 6 months.

Page: 15/15