

1. Scope

The SCC series **X2** & **X1/Y2** safety capacitors are designed specifically for use in modem, facsimile, telephone and other electronic equipment.

These parts are compliant to EN6038414, IEC60384-14, UL60384-14, CSA E60384-1 & CSA E60384-14.

2. Parts Number Code

(1)Product

Product Code	
SCC	Safety Approval of MLCC Product

(2)Chip Size

Length×Width	unit : mm(inch)
4.60× 2.00	(.18× .08)
4.60× 3.20	(.18× .12)
5.70× 2.00	(.22× .08)
5.70× 2.80	(.22× .11)
5.70× 5.00	(.22× .20)
7.10× 6.35	(.28× .25)
	4.60× 2.00 4.60× 3.20 5.70× 2.00 5.70× 2.80 5.70× 5.00

(3) Temperature Characteristics

Code	Temperature	Temperature	Temperature
	Characteristic	Range	Coefficient
Ν	NPO	-55℃~+125℃	30 ppm/° C
Х	X7R	-55℃~+125℃	± 15%

(4)Capacitance	unit :pico farads(pF)
Code	Nominal Capacitance (pF)
5R0	5.0
120	12.0
151	150.0
102	1,000.0

X. If there is a decimal point, it shall be expressed by an English capital letter R

(5)Capacitance Tolerance

· · · -		
Code	Tolerance	Nominal Capacitance
С	± 0.25 pF	Less Than 10 pF
D	± 0.50 pF	(Include 10 pF)
F	± 1.00 pF	_
J	± 5.00 %	More Than 10 pF
K	± 10.0 %	_
М	± 20.0 %	
Q	+10%~+20%	_

(6) Class Level of Capacitors

. ,	-
Code	Class
202	X2
502	X1/Y2
602	X1/Y2 for
	SCC2208N,SCC2211N,SCC2220N Series

(7)Tapping

Code	Туре
Т	Tape & Reel
В	Bulk

3. Nominal Capacitance and Tolerance

3.1 Standard Combination of Nominal Capacitance and Tolerance

Class	Characteristic	Toler	ance	Nominal Capacitance
Class	NPO	Less Then 10 pF	C (± 0.25 pF)	0.5,1,1.5,2,2.5,3,3.5,4,4.5,5
Ι			D (± 0.50 pF)	5,6,7,8,9,10
			F (± 1.00 pF)	6,7,8,9,10
		More Than 10 pF	J (± 5.00 %)	E-24 series
			K (± 10.0 %)	
Class II	X7R	K (± 10.0 %),	M (± 20.0 %)	E-12 series

3.2 E series(standard Number)

Standard No.		Application Capacitance										
E- 3	1.0			2.2			4.7					
E- 6	1.0		1.0 1.5 2.2		.2	3.3		4.7		6.8		
E-12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
E-24	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
	1.1	1.3	1.6	2.0	2.4	3.0	3.6	4.3	5.1	6.2	7.5	9.1

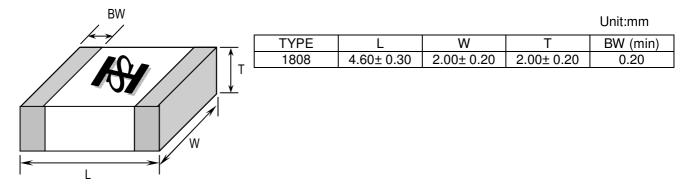
4. Operation Temperature Range

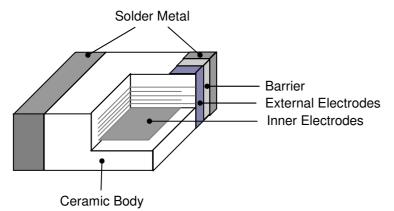
Class	Characteristic	Temperature Range	Reference Temp.
Ι	NPO	-55℃ ~ +125℃	25 ℃
Π	X7R	-55℃ ~ +125℃	25℃

5. Storage Condition

Storage Temperature : 5 to 40 $^\circ\mathrm{C}$

Relative Humidity : 20 to 70 %


Storage Time : 12 months max.



6. Dimensions

6.1 Configuration and Dimension :

6.2 Termination Type :

7. Electronic Nominal Specification

7.1 Safety Standard:

TUV : IEC 60384-14:2013+A1 EN 60384-14:2013+A1 UL :UL 60384-14 CSA E60384-1 & CSA E60384-14

Temperature Characteristic	Class	Size	Rated Voltage	Certificated		Cap: 10	acitance 101	e Range (10		03
NPO	X2	1808	250 Vrms	TUV/UL	2				1000	
X7R	X2	1808	250 Vrms	TUV/UL			150 📼		1000	
X7R	X2	1812	250 Vrms	TUV/UL				1000	2700	
X7R	X2	2825	250 Vrms	TUV/UL					47000~560	00 🗖
NPO	X1/Y2	1808	250 Vrms	TUV/UL	2		15	50		
X7R	X1/Y2	1808	250 Vrms	TUV/UL			150 🗖		1000	
X7R	X1/Y2	1812	250 Vrms	TUV/UL			130		1000	
X7R	X1/Y2	2208	250 Vrms	TUV/UL		36			1000	
X7R	X1/Y2	2211	250 Vrms	TUV/UL		68			2200	
X7R	X1/Y2	2220	250 Vrms	TUV/UL			130 🕅		4700	
NPO	X1/Y2	2208	250 Vrms	TUV/UL	2			390		
NPO	X1/Y2	2211	250 Vrms	TUV/UL	2			680)	
NPO	X1/Y2	2220	250 Vrms	TUV/UL	2				1200	

8. Performance

No.	lte	em	Specification	Test Condition	
1	Vis	sual	No abnormal exterior appearance	Visual Inspection	
2		ension	See Page 3 / Item 6.	Visual Inspection	
3	Capad	citance	Within the specified tolerance	Char. Frequency Voltage	
4	Q and	on Factor	Class I (NPO) More than 30pF : $Q \ge 1000$ 30pF & below: $Q \ge 400 + 20C$ (C:pF) Class II (X7R) Maximum : 2.5% (0.025)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
				After performing deage at 150±5% for 30min.	
5		lation	Minimum 10,000M Ω	and placement room temperature for 24±2hr. Applied Voltage: Applied Voltage:500V Charge Time : 60sec.	
6	Resistance 6 Voltage Proof		No dielectric breakdown or mechanical breakdown		
7	7 Solderability		More than 90% of the terminal surface is to be soldered newly, so metal part does not come out or dissolve	Solder Temperature : $245\pm5^{\circ}$ C Dip Time : 5 ± 0.5 sec. Immersing Speed : $25\pm10^{\circ}$ mm/s Solder : Lead Free Solder Flux :Rosin Preheat : At 80~120 °C For 10~30sec.	
8	Resistance to	Appear- ance	No mechanical damage shall occur.	Bending shall be applied to the 1.0 mm with 1.0 mm/sec.	
	Flexure of	Capacit- ance	Characteristi Cap. Change	The duration of the applied forces shall be	
	Substrate		Class I (NPO $\leq \pm 5.0\%$ of initial value	5 ± 1sec R340 Bending Limit	
			Class II (X7R \leq ± 12.5% of initial value		
		Q / D.F.	To satisfy the specified initial value	{ <> 45±1mm 45±1mm	
		Insulation Resistance	To satisfy the specified initial value	Solder the capacitor on P.C. board shown in	
		Voltage Proof	To satisfy the specified initial value	Fig 1. before testing.	
9	Robustness of	Appear- ance	No indication of peeling shall occur on the terminal electrode.	Pull force shall be applied for 10 ± 1 second. ≤ 0603 5N($= 0.5 \text{ Kg} \cdot \text{f}$)	
	Shear	Capacit- ance	Characteristi Cap. Change c	>060310N(=1.0 Kg·f)	
			Class I (NPO $\leq \pm 5.0\%$ of initial value	N·f	
			Class II (X7R \leq ± 12.5% of initial value		
		Q / D.F.	To Satisfy The Specified Initial Value]	
		Insulation Resistance	To Satisfy The Specified Initial Value	Solder the capacitor on P.C. board shown in Fig 1. before testing.	
		Voltage Proof	To Satisfy The Specified Initial Value	g	

No.	lte	em	S	Specification	Test Condition		
10		ance		al damage shall occur.	Class II capacitor shall be set for 48±4 hours at room temperature after one hour heat		
	Soldering Heat	Capacit- ance	Characteristi c		treatment at 150 +0/-10 $^{\circ}$ C before initial measure.		
)	≤ ± 10% of initial value	Preheat : At $150\pm 10^{\circ}$ For $60\sim 120$ sec. Dip : Solder Temperature of $260\pm 5^{\circ}$		
)	≤ ± 20% of initial value	Dip Time : 10 ± 1sec. Flux :Rosin		
		Q / D.F.	-	specified initial value	Measure at room temp. after cooling for: Class I : 24 \pm 2 Hours		
		Insulation Resistance	More than 1,0		Class II : 48 ± 4 Hours		
		Voltage Proof		Specified Initial Value			
11		ance		al damage shall occur.	Test Condition : Temperature : 40℃		
		Capacit- ance	Characteristi c	Cap. Change	Humidity : 95 %RH Test Time : 500hr (21days)		
			Class I (NPO)	$\leq \pm 15\%$ of initial value	The capacitors with rated voltage applied. Measure at room temp. after cooling for:		
				$\leq \pm 15\%$ of initial value	Class I :24 ± 2 Hrs Class II :48 ± 4 Hrs		
		Q Class I	More Than 30 30pF & Below (C:pF)	p⊢ : Q ≧ 350 :Q ≧ 275+2.5× C	Solder The Capacitor On P.C. Board Shown		
		D.F. Class II	Maximum 5.0°	%	In Fig 2. Before Testing.		
		Insulation Resistance	More Than 1,0	0 00Μ Ω			
		Voltage Proof	To Satisfy The Specified Initial Value				
12	Endurance	Appear- ance	No Mechanic Occur	cal Damage Shall Be	Impulse Voltage Each individual capacitor shall be subjected		
		Capacit- ance	Characteristi c	Cap. Change	to a 2.5KV(X2) and 5KV(X1/Y2) impulse for three times. Then the capacitors are applied		
			Class I (NPO)	$\leq \pm 20\%$ of initial value	to life test. (%) Front time T ₁ =1.2µs=1.67T		
			Class II (X7R	≤ ± 20% of initial value	100 Time to half-value T ₂ =50µs		
		Q Class I	More Than 30	$pF: Q \ge 350$:Q \ge 275+2.5×C (C:pF)			
		D.F.	Maximum 5.0°				
		Class II Insulation	Minimum 1 00		30		
		Resistance	Minimum 1,00				
		Voltage Proof	To satisfy the	specified initial value	T_1 T_2 t		
					Temperature : 125°C		
					Test Time : 1000hrs Applied Voltage : Class X Capacitors :1.25Ur Class Y Capacitors :1.70Ur		
					Except that once every hour the voltage shall be increased to 1000Vrms for 0.1s.		

No.	ltem	Specification	Test Condition
13	Passive Flammability	Capacitor didn't burnt at all	Volume Sample : 21.56mm ³ Flame exposure time : 5 sec.Max.
14	Active Flammability	a flame	The capacitors of class X2 each test capacitors applied Ur(250Vac). Then each sample shall be subjected to 20 discharges from a tank capacitor, charge to a voltage that, when discharged, places Ui(2500V) across the capacitor under test. The interval
			between successive discharges shall be 5s.

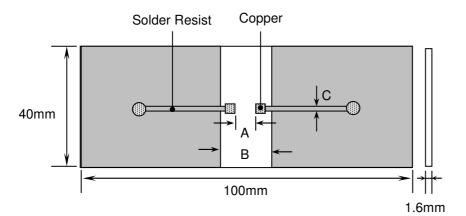
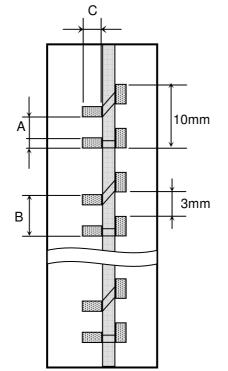


Fig.1


P.C. Board for Bending Strength Test

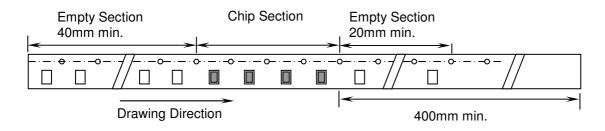
(referring to IEC384-14 and EN132400)

Material : Glass Epoxy Substrate : Copper (Thickness : 0.035mm) : Solder Resist

Fig.2 Test Substrate

Material : Glass Epoxy Substrate : Copper (Thickness : 0.035mm) : Solder Resist Thickness : 1.6 mm

l	1999955		Unit:mm
Туре	A	В	С
1808	3.5	7.0	2.5
1812	3.5	7.0	3.7
2208	4.5	8.0	2.5
2211	4.5	8.0	3.0
2220	4.5	8.0	5.6



9. Packing

9.1 Bulk Packing

According to customer request.

9.2 Chip Capacitors Tape Packing

9.3 Material And Quantity

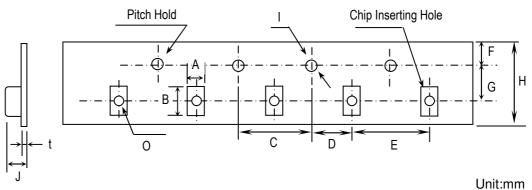
Tape	18	08	1812/2208/2211/2220		
Material	$0.9mm < T \le 1.25mm$	1.25 mm $<$ T \leq 2.0 mm	1.25 mm $<$ T \leq 2.2 mm	T>2.2mm	
Plastic	3000 pcs/Reel	2000 pcs/Reel	1000 pcs/Reel	700 pcs/Reel	

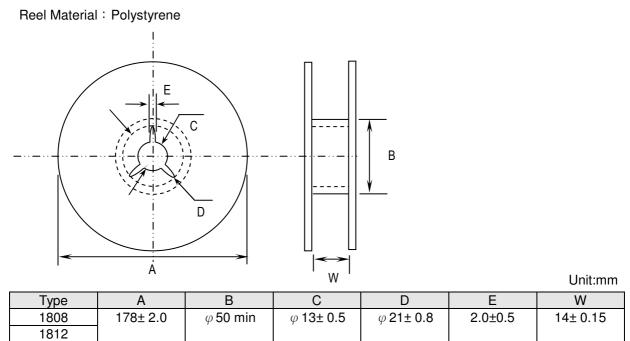
Tape	2825
Material	T>2.6mm
Plastic	400 pcs/Reel

9.4 Cover Tape Reel Off Force

9.4.1 Peel-Off Force

5 g·f \leq Peel-Off Force \leq 70 g·f


9.4.2 Measure Method

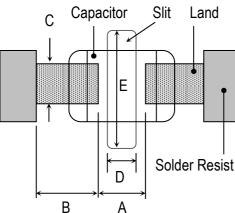

9.5 Plastic Tape

Туре	А	В	С	D	E	F
1808	2.5±0.2	4.9±0.2	4.0± 0.1	2.0± 0.05	4.0± 0.1	1.75± 0.1
1812	3.6±0.2	4.9±0.2			8.0± 0.1	
2208	2.5±0.2	6.1±0.2				
2211	3.2±0.2	6.1±0.2				
2220	5.4±0.2	6.1±0.2				
2825	6.7±0.2	7.5±0.2			12.0± 0.1	
Tura a	<u> </u>		1			0
Туре	G	H	1	J	L L	0
1808	5.5± 0.05	12.0 ± 0.3	ϕ 1.5+0.1/-0	3.7 max.	0.3 max.	1.0± 0.1
1812						1.5± 0.1
2208						
2200						
2208						

9.6 Reel Dimensions

||HEC

IHHEC is a trademark of Holy Stone Enterprise Co., Ltd


Caution

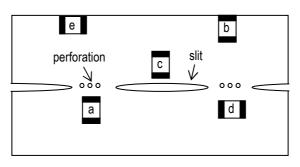
1. Storage

Store the capacitors where the temperature and relative humidity don't exceed 40 °C and 70%RH. We recommend that the capacitors be used within 12 months from the date of manufacturing. Store the products in the original package and do not open the outer wrapped, polyethylene bag, till just before usage. If it is open, seal it as soon as possible or keep it in a desiccant with a desiccation agent.

2. Construction of Board Pattern

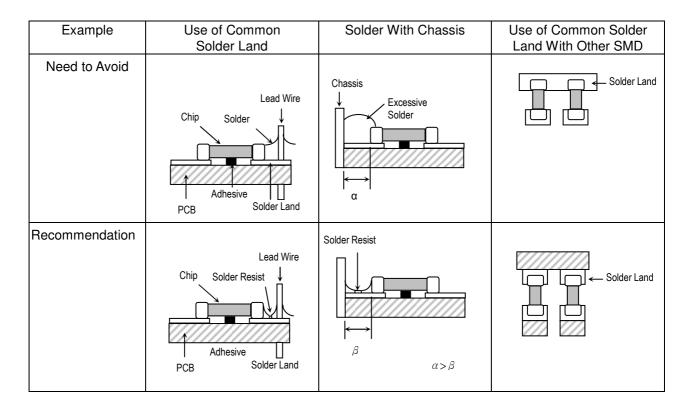
Improper circuit layout and pad/land size may cause excessive or not enough solder amount on the PC board. Not enough solder may create weak joint, and excessive solder may increase the potential of mechanical or thermal cracks on the ceramic capacitor. Therefore we recommend the land size to be as shown in the following table:

2.1 Size and recommend land dimensions for reflow soldering.


EIA Code	Chip	(mm)			Land (mm)		
	L	W	Α	В	С	D	E
1808	4.60	2.00	2.8~3.4	1.2~1.4	1.5~1.8	1.0~2.8	3.6~4.1
1812	4.60	3.20	2.8~3.4	1.2~1.4	2.3~3.0	1.0~2.8	4.8~5.3
2208	5.70	2.00	4.0~4.6	1.4~1.6	1.5~1.8	1.0~4.0	3.6~4.1
2211	5.70	2.80	4.0~4.6	1.4~1.6	2.0~2.6	1.0~4.0	4.4~4.9
2220	5.70	5.00	4.0~4.6	1.4~1.6	3.5~4.8	1.0~4.0	6.6~7.1

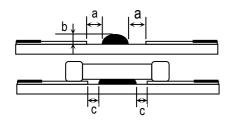
2.2 Mechanical strength varies according to location of chip capacitors on the P.C. board.

Design layout of components on the PC board such a way to minimize the stress imposed on the components, upon flexure of the boards in depanelization or other processes.


Component layout close to the edge of the board or the "depanelization line" is not recommended.

Susceptibility to stress is in the order of: a>b>c and d>e


2.3 Layout Recommendation


3. Mounting

3.1 Sometimes Crack is caused by the impact load due to suction nozzle in pick and place operation.

In pick and place operation, if the low dead point is too low, excessive stress is applied to component. This may cause cracks in the ceramic capacitor, therefore it is required to move low dead point of a suction nozzle to the higher level to minimize the board warp age and stress on the components. Nozzle pressure is typically adjusted to 1N to 3N (static load) during the pick and place operation.

3.2 Amount of Adhesive

Example : 0805 & 1206

а	0.2mm min.				
b	70 ~ 100 μm				
С	Do not touch the solder land				



4. Soldering

4.1. Wave Soldering

Most of components are wave soldered with solder at Peak Temperature.. Adequate care must be taken to prevent the potential of thermal cracks on the ceramic capacitors. Refer to the soldering methods below for optimum soldering benefits.

Recommend flow soldering temperature Profile

Soldering Method	Peak Temp.($^{\circ}$ C) / Duration (sec)
1206/0805/0603	∆ T ≤ 100~150°C max.
Pb-Sn Solder	250°C (max.) / 3sec(max.)
Lead Free Solder	260°C (max.) / 5sec(max.)

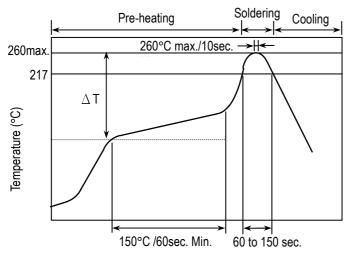
Recommended solder compositions

Sn-37Pb (Pb - Sn Solder)

Sn-3.0Ag-0.5Cu (Lead Free Solder)

To optimize the result of soldering, proper preheating is essential:

- 1) Preheat temperature is too low
 - a. Flux flows to easily
 - b. Possibility of thermal cracks
- 2) Preheat temperature is too high
 - a. Flux deteriorates even when oxide film is removed
 - b. Causes warping of circuit board
 - c. Loss of reliability in chip and other components

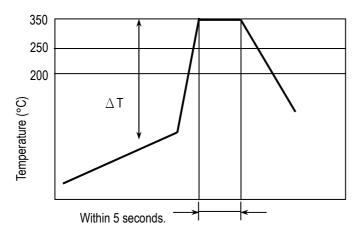

Cooling Condition:

Natural cooling using air is recommended. If the chips are dipped into a solvent for cleaning, the temperature difference (Δ T) between the solvent and the chips must be less than 100 °C.

4.2 Reflow Soldering

Preheat and gradual increase in temperature to the reflow temperature is recommended to decrease the potential of thermal crack on the components. The recommended heating rate depends on the size of component, however it should not exceed 3 °C/Sec.

Recommend reflow profile for Lead-Free soldering temperature Profile (J-STD-020D)


% The cycles of soldering : Twice (max.)

Soldering Method	Change in Temp.(℃)
1206 and Under	$\Delta T \leq 190 \ { m C}$
1210 and Over	$\Delta T \leq 130 \ {}^\circ { m C}$

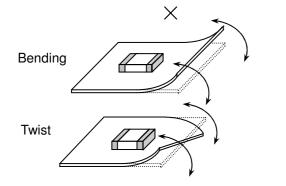
4.3 Hand Soldering

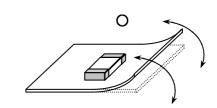
Sudden heating of the components results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential Δ T, within the range shown in table. The smaller the Δ T, the less stress on the chip.

Soldering Method	Change in Temp.(℃)
1206 and Under	$\Delta T \leq 150 \ ^{\circ}C$
1210 and Over	$\Delta T \leq 130 \ {}^\circ { m C}$

How to Solder Repair by Solder Iron

1) Selection of the soldering iron tip


Tip temperature of solder iron various by its type, P.C.board material and solder land size. Higher the tip temperature, quick the operation is .but the heat shock may crack the chip capacitor.


- 2) recommended solder iron condition
 - a.) Preheating Condition : Board and components should be preheated sufficiently at 150 ℃ or over, and soldering should be conducted with soldering iron as boards and components are maintained at sufficient temperatures.
 - b.) Soldering iron power shall not exceed 30 W.
 - c.) Soldering iron tip diameter shall not exceed 3mm.
 - d.) Temperature of iron tip shall not exceed 350 $^\circ\!C$ and the process should be finished within 5 seconds. (refer to MIL-STD-202G)
 - e.) Do not touch the ceramic dielectric with solder iron other than the terminations. Direct contact of the soldering iron with ceramic dielectric of chip capacitor may cause crack.
 - f.) After soldering ,let the products to cool down gradually in the room temperature.

% The soldering to lose the use of electronic heat gun.

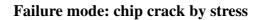
5. Handling after chip mounted

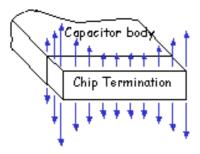
5.1 Please pay attention put the component lateral to the direction in which stress acts.

5.2 Crack will be caused if board is warped due to excessive load by check pin.

5.3 Mechanical stress due to warping and torsion by dividing.

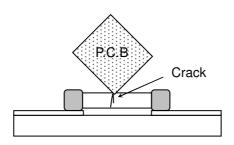
- (a) Crack occurrence ratio will be increased by manual separation.
- (b) Crack occurrence ratio will be increased by tensile force , rather than compressive force.


imes :Tensile Stress


O: Compressive Stress

Capacitor Stress Analysis





6. Handling of Loose Chip Capacitor

6.1 If dropped the chip capacitor may crack.

6.2 Piling the P.C. board after mounting for storage or handling, the corner of the P.C. board may hit the chip capacitor of another of board to cause crack.

7. Safekeeping condition and period

For safekeeping of the products, we recommend to keep storage temperature +5 ~+40 $^{\circ}$ C , Humidity 20 ~70%RH and use them within 12 months.

